
Observation of ttH Production

Prof. Chris Neu
Department of Physics
University of Virginia

On behalf of the CMS Collaboration

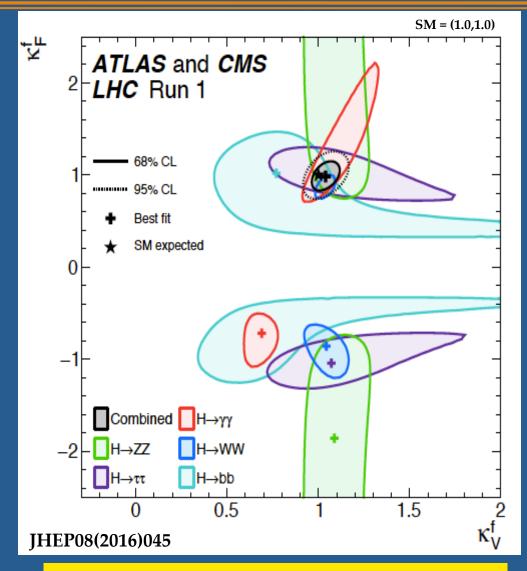
Fermilab 4 May 2018

Discovery of the Higgs Boson

- This discovery has been billed as one of the most important scientific discoveries of the last half-century
- A great advance in our understanding of the dynamics of the fundamental world
- Now nearly 6 years on, our work continues.
- Much remains to be known about this particle

Outline:

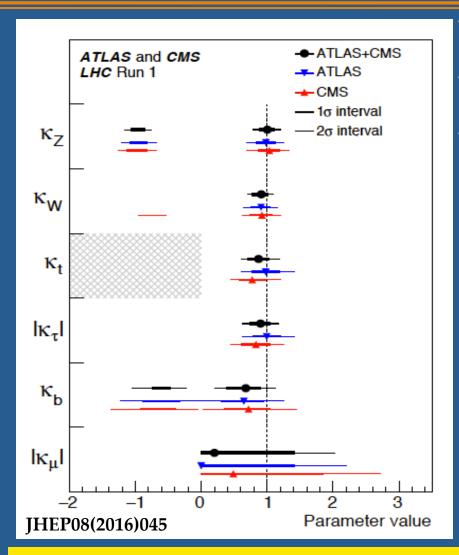
- Characterizing the observed Higgs boson
- Missing Piece: The top-Higgs coupling
- Status of the top-Higgs coupling pursuit at CMS
- Precision top-Higgs physics
- Summary and looking forward


Higgs Characterization: Couplings

- In the post-discovery era focus:
 - Is this the Higgs Boson of the Standard Model?
 - The coupling of this Higgs boson to the other fundamental particles is one distinguishing feature:
 - Unambiguously predicted in the SM
 - BSM physics (massive new particles or new dynamics) predicted to impact the observed coupling strengths

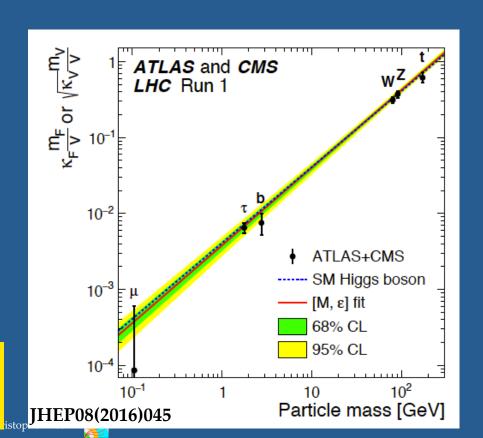
$$g_{HVV} = 2\frac{m_V^2}{v}$$
 $g_{Hff} = \frac{m_f}{v}$

BSM allowance:
$$g_{HVV} = \kappa_V \left(2 \frac{m_V^2}{v} \right) \quad g_{Hff} = \kappa_f \left(\frac{m_f}{v} \right)$$

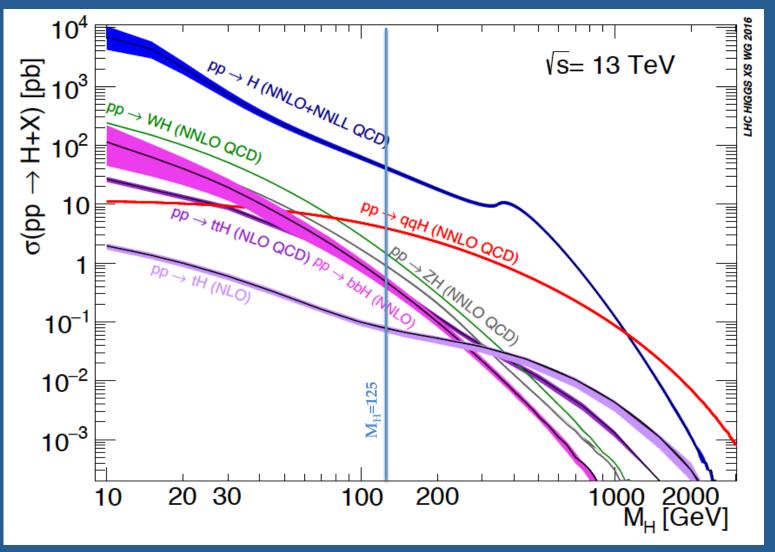


Fermionic and bosonic coupling modifiers look very SM-like

Christopher Neu

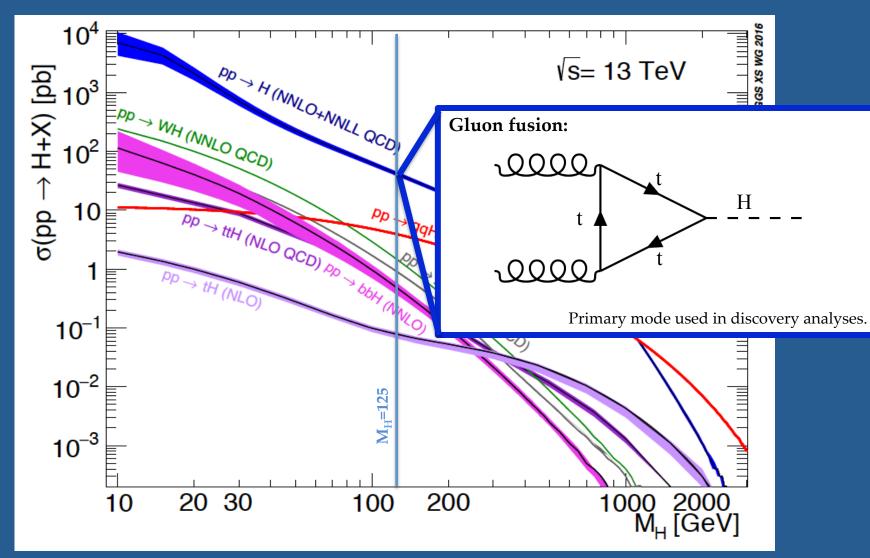


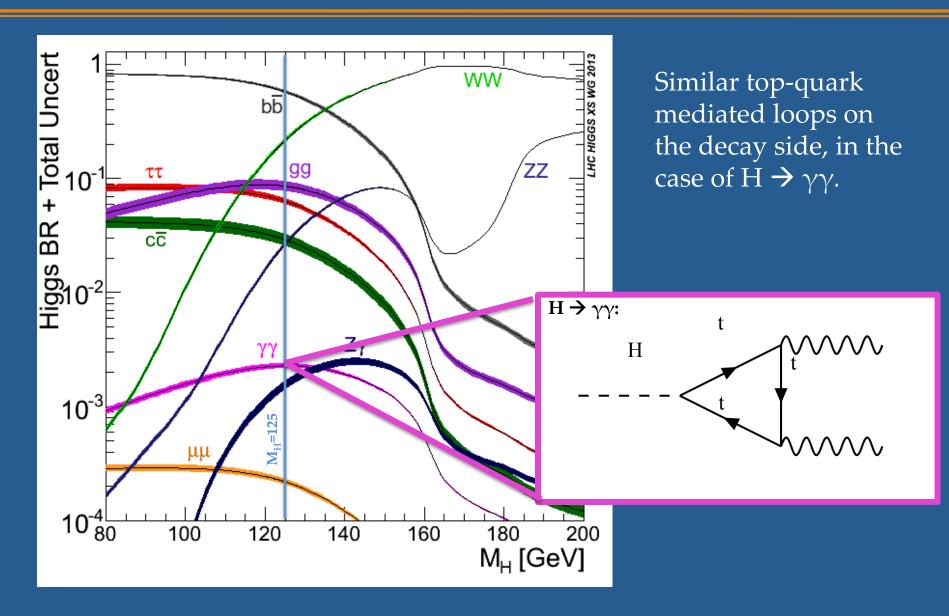
Studies of Higgs Couplings


Particle-specific coupling modifiers look very SM-like assuming no influential BSM content

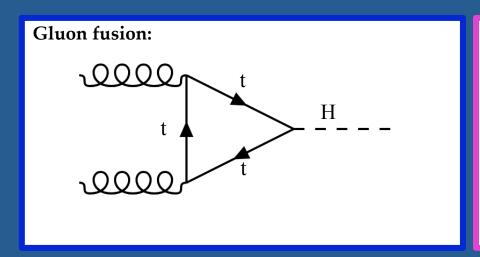
- Assume SM only particles participating in loop-mediated processes and BR(BSM)=0
- Examine prominent unique couplings that are accessible
- Top-Higgs coupling Y_t is unique:
 - top quark has indirect influence on Higgs production and decay

Higgs Production: Influence from Top


Workhorse analyses probe the top-Higgs coupling on the production side:

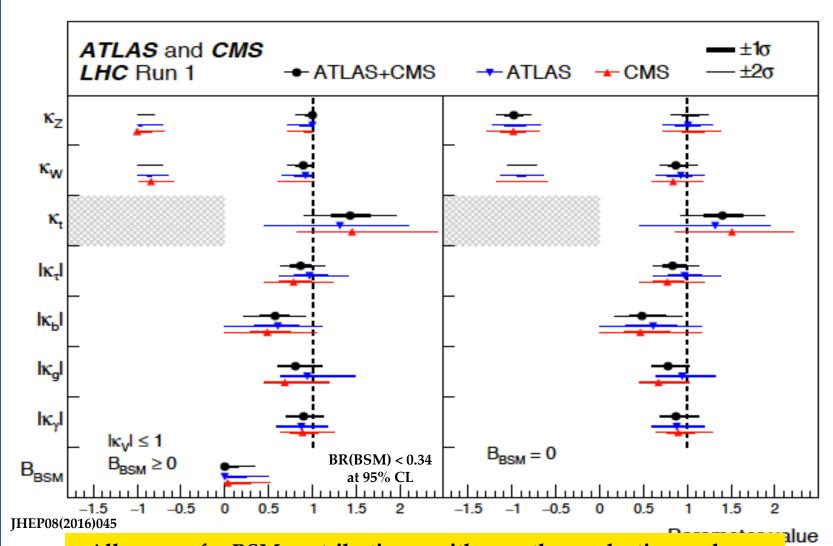

Higgs Production: Influence from Top

Workhorse analyses probe the top-Higgs coupling on the production side:



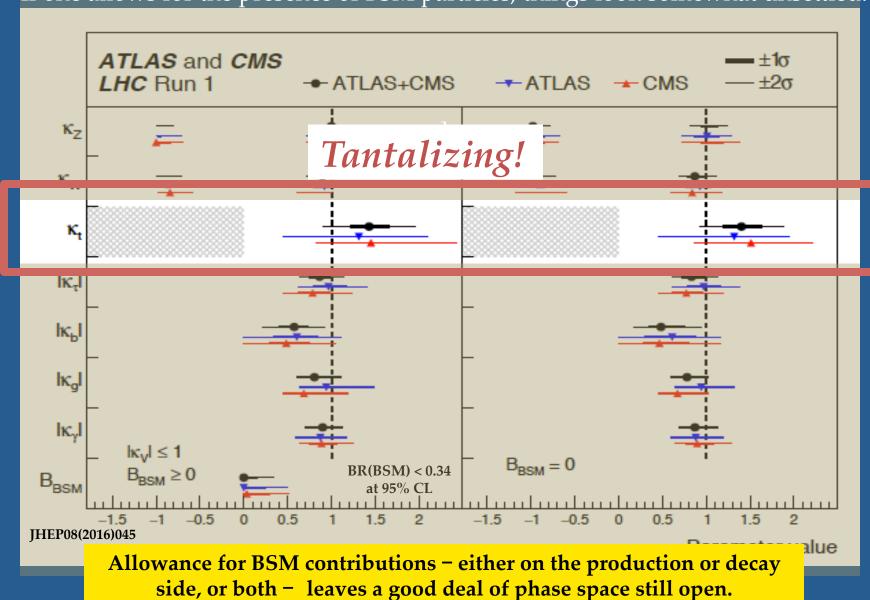
Higgs Decay: Influence from Top

Circumstantial Evidence of Top-Higgs Coupling

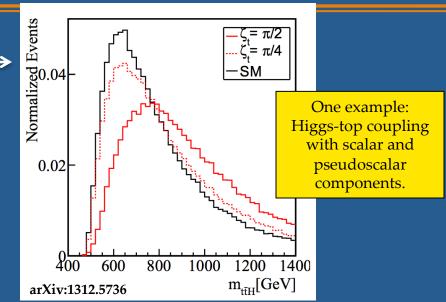


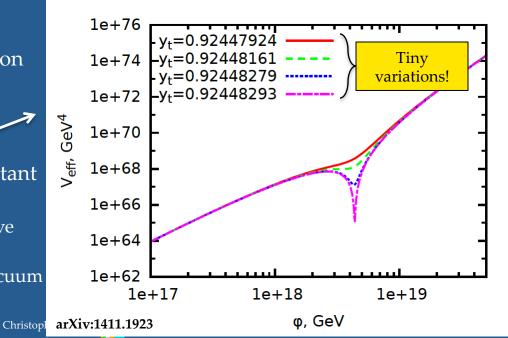
- Within the SM, these loops are dominated by top quarks:
 - In gluon fusion, need something massive that participates in the strong interaction → top quark drives this loop, followed by b's...
 - In H→γγ, need something massive that participates in the EM interaction
 → top quark drives this loop, followed by W's...
- Results presented so far assume there are no exotic contributions to the loops in these processes.
- But what about the possibility of another suitable particle or particles from outside the norms of the SM?

Studies of Higgs Couplings


If one allows for the presence of BSM particles, things look somewhat unsettled.

Allowance for BSM contributions – either on the production or decay side, or both – leaves a good deal of phase space still open.


Studies of Higgs Couplings


If one allows for the presence of BSM particles, things look somewhat unsettled.

Deeper Significance of Top-Higgs Coupling

- Abundance of BSM theories manifest themselves in an alteration of the top-Higgs dynamics
- Relatively large m_{top} implies $Y_t \sim 1$:
 - Does this indicate some special role for top in EWSB?
- Y_t is predicted to be by far the largest of all the fermionic couplings
 - Could be essential in identifying unique behavior in fermion sector
- Y_t will be the easiest (only?) up-type fermion coupling we are able to probe
 - Could be window to unforeseen dynamics
- Extrapolating to Planck energies, Y_t important in effective potential of the Higgs field
 - Largest coupling → small changes to Y_t have large impact
 - Slight deviation in Y_t away from SM → vacuum lifetime is less than the age of the Universe
 - Not good for any of us

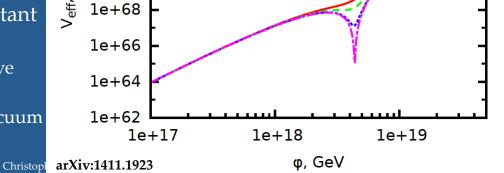
Deeper Significance of Top-Higgs Coupling

- Abundance of BSM theories manifest themselves in an alteration of the top-Higgs dynamics
- Relatively large m_{top} implies $Y_t \sim 1$:
 - Does this indicate some special role for top in EWSB?
- Y_t is predicted fermionic coup
 - Could be es behavior in
- Y_t will be the e coupling we ar
 - Could be w

Imperative:

Normalized Events

0.02

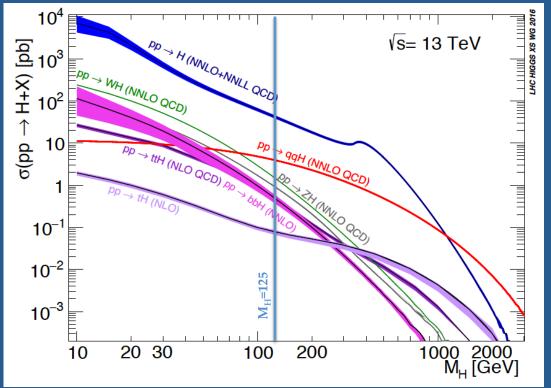

Absolutely need to measure Y, directly to know the true nature of the couplings of the observed Higgs boson.

Extrapolating to Planck energies, Y_t important in effective potential of the Higgs field

- Largest coupling \rightarrow small changes to Y_t have large impact
- Slight deviation in Y₁ away from SM → vacuum lifetime is less than the age of the Universe

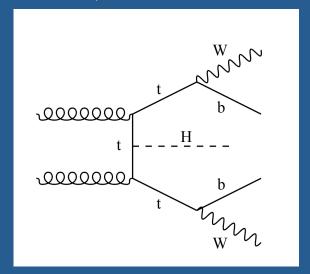
• Not good for any of us

One example:


Higgs-top coupling with scalar and

pseudoscalar

components.


Tiny rariations!

A Direct Probe of Y_t

root(s) [TeV]	7	8	13
σ (ttH (125)) [fb]	90	130	510
σ (tt+jets) [fb]	177000	253000	830000
Ratio	5.0E-4	5.1E-4	6.1E-4

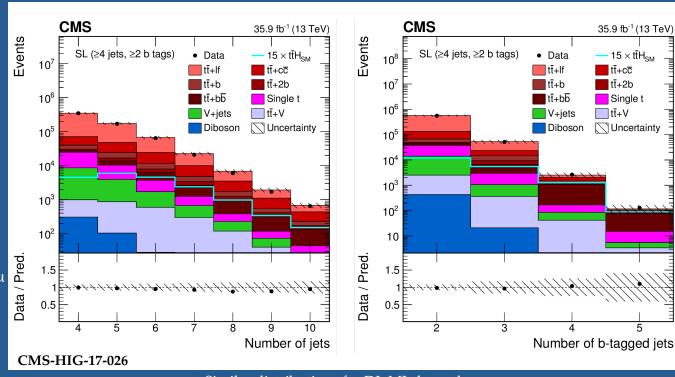
- m_{top} too large for H→tt must look for production-side dynamics
- Higgs production in association with a top-quark pair (ttH production):

- Comparatively small production cross section wrt other Higgs production channels
- Signal dwarfed by tt+jets bkgd
- Spectacular signature rich final state

Summary of CMS ttH Analyses

	н→	bb	Η – τ _{had} τ _{had}	• ττ τ _{had} + τ _{lep}	H → WW,ZZ	Η → γγ				
7 TeV	CMS- HIG-12-035 (NN)	JHEP 1305 (2013) 145 (NN)				various				
	EPJC 75 (2015) 251 (ME)	(2.72.7)		CMS-HI	various					
8 TeV CMS-HIG-13-0 (BDT)			9	(SS-2lep, 3						
	JHEP 09(2014)087									
2015	CMS-HIG	-16-004								
13 TeV	CMS-HIG-		CMS- HIG-17-003	CMS- HIG-17-004		CMS-				
	submitted to JH CMS-HIG- submitted to JH	EP (all-had) -17-026 –	C	HIG-16-040- submitted to JHEP						

Summary of CMS ttH Analyses


	H → 1	ob	$ au_{ ext{had}} au_{ ext{had}}$	$H \rightarrow \gamma \gamma$			
7 TeV	CMS- HIG-12-035 (NN)	JHEP 1305 (2013) 145 (NN)				various	
8 TeV	EPJC 75 (2015) 251 (ME)	MS-HIG-13-019 (BDT))	CMS-HI (SS-2lep, 3	various		
			JHEP 09(
2015	CMS-HIG	-16-004		CMS-HIG-15-008			
13 TeV	CMS-HIG		CMS- HIG-17-003		CMS-		
	CMS-HIG-17-022 – submitted to JHEP (all-had) CMS-HIG-17-026 – submitted to JHEP (SL,DL)		C	HIG-16-040– submitted to JHEP			

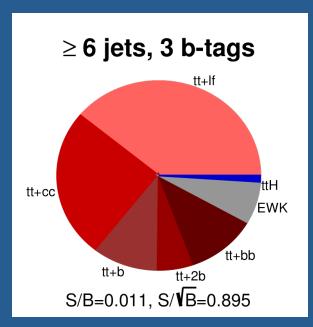
ttH, H → bb

Overview: H→bb

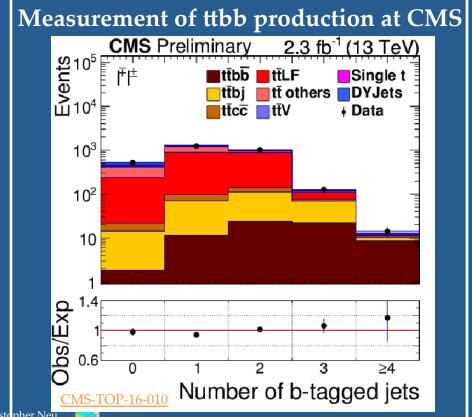
- H→bb is a prime target of ttH analyses:
 - Largest Higgs BR for $M_{LI} = 125$
- CMS considers three topologies:
 - Single-lepton (SL):
 - one high p_T iso'd e/μ
 - ≥4 jets
 - ≥3 b tags
 - Dilepton (DL):
 - two opposite-sign e/µ
 - ≥4 jets
 - ≥3 b tags
 - Multijet (MJ):
 - ≥7 jets
 - ≥3 b tags
- Split selected events into categories based on jet, b-tag multiplicity

Similar distributions for DL,MJ channels

A discriminant is devised in each category for signal extraction and a simultaneous fit is performed across all categories.

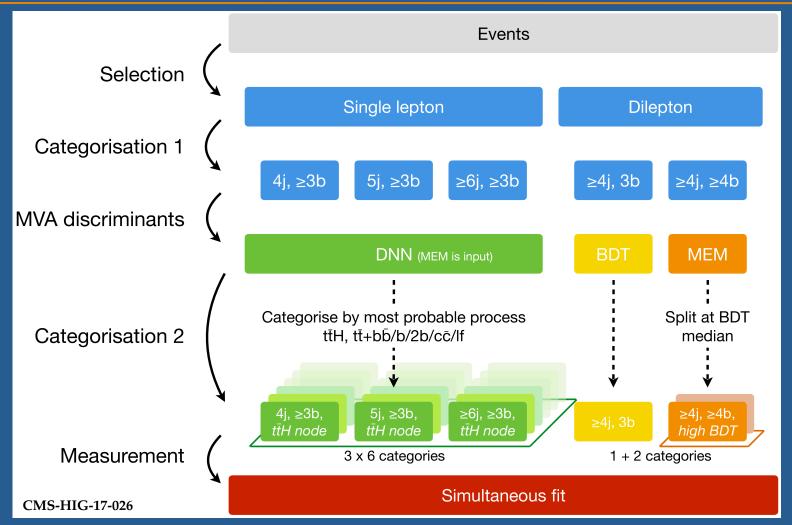

Low-signal categories serve to help constrain backgrounds.

Details of signal extraction in backup.



Big Issue: Understanding the tt+HF Background

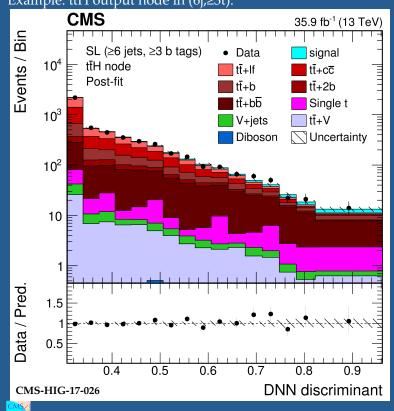
- Modeling of tt+jets process:
 - Powheg+Pythia8, normalized to NNLO prediction
 - Separate templates for tt + b, tt + bb, tt +
 2b, tt + cc, tt + LF
 - 50% rate uncertainty per tt + HF process, uncorrelated in final fit
 - Among the leading uncertainties
 - Add. sources include parton shower, hadronisation, PDF, ISR/FSR


- tt+bb production poses irreducible background:
 - Poorly known theoretically
 - Measurements of ttbb CRUCIAL

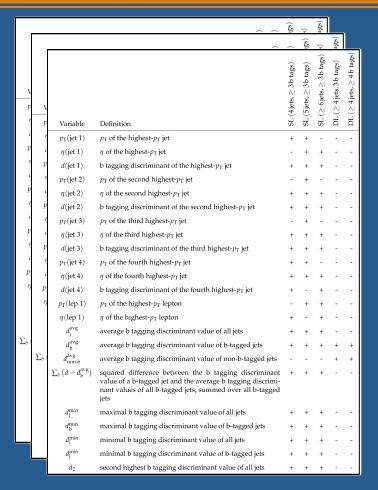
Christopher Neu

Signal Extraction: H→bb

- Challenging signal extraction due to overwhelming irreducible backgrounds require novel techniques
- Different multivariate techniques were considered for the signal extraction choice based on best expected sensitivity


 Christopher Neu

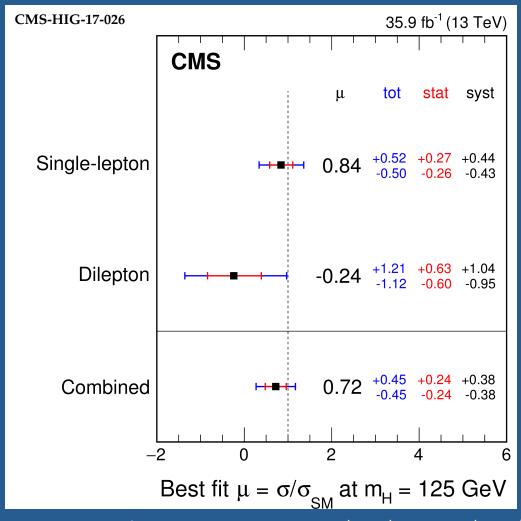
Example: Deep Neural Networks

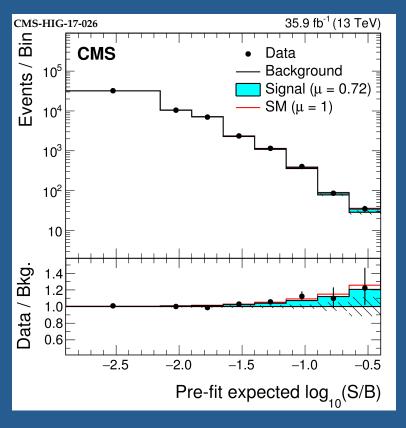

- Neural networks (NNs) have been used in HEP analyses for decades
- Historically, these have been "shallow" networks
 - One input layer with nodes for each of the input variables characterizing the processes
 - One hidden layer with some optimized number of nodes
 - One output layer with, typically, one output node (target output = 1.0 for signal, 0.0 for bkgd)
- Shallow was the way to go:
 - Computationally expensive to train multilayered networks
 - Very little evident gain
- Things have evolved:
 - Learning algorithms improve
 - Sequencing of NNs afford access to features
 - Cases where "deep" NNs are effective over their simpler counterparts

- 1. Separate selected events into three categories: $(4j,\geq 3t)$, $(5j,\geq 3t)$, $(6j,\geq 3t)$
- 2. Design multi-class DNN in each category with 6 output nodes, one for each major bkgd process and one for signal
- 3. Training proceeds with goal of predicting type of process for each event

Example: ttH output node in (6j,≥3t):

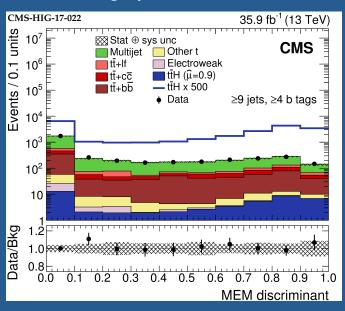
Example: Deep Neural Networks

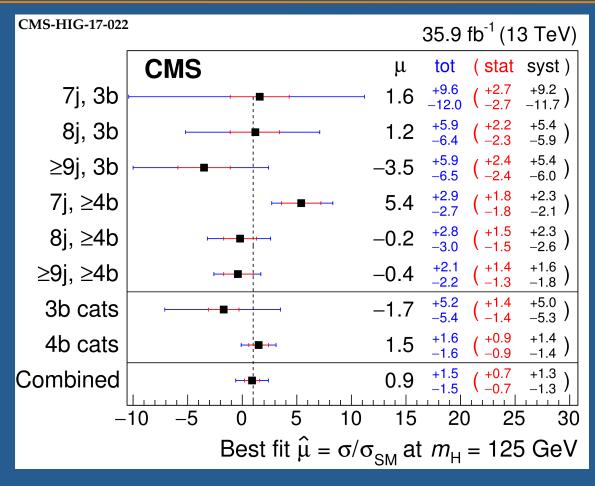

- Large parameter space (50+ variables) was considered for the choice of input variables in each category, in both the SL and DL analyses
- Significant campaign to really make an optimized choice


Channel	Method	Best-fit μ $\pm \text{tot} (\pm \text{stat } \pm \text{syst})$
Single-lepton	BDT+MEM	$1.0^{+0.69}_{-0.66} \left(^{+0.31}_{-0.30} \right. ^{+0.62}_{-0.59} \right)$
Single-lepton	DNN	$1.0_{-0.55}^{+0.58} \left(\begin{smallmatrix} +0.30 & +0.50 \\ -0.29 & -0.47 \end{smallmatrix} \right)$
Dilepton	BDT+MEM	$1.0^{+1.22}_{-1.12} \left(^{+0.65}_{-0.62} ^{+1.04}_{-0.93} \right)$
Dilepton	DNN	$1.0_{-1.36}^{+1.38} \left(\begin{smallmatrix} +0.71 & +1.18 \\ -0.69 & -1.18 \end{smallmatrix} \right)$
Combined	BDT+MEM	$1.0_{-0.57}^{+0.60} \left(^{+0.28}_{-0.27} ^{+0.53}_{-0.51} \right)$
Combined	DNN	$1.0_{-0.51}^{+0.55} \left(^{+0.27}_{-0.27} ^{+0.47}_{-0.44} \right)$

- DNNs were optimal for SL, BDT+MEM in DL categories
- Final fit took these output discriminants in a simultaneous max likelihood fit

ttH,H→bb: Results from SL,DL


- Best fit: $\mu = -0.72 \pm 0.24 \text{ (stat)} \pm 0.38 \text{ (syst)}$
- Corresponds to an observed (expected) signal significance of 1.6 (2.2) standard deviations above the background-only hypothesis

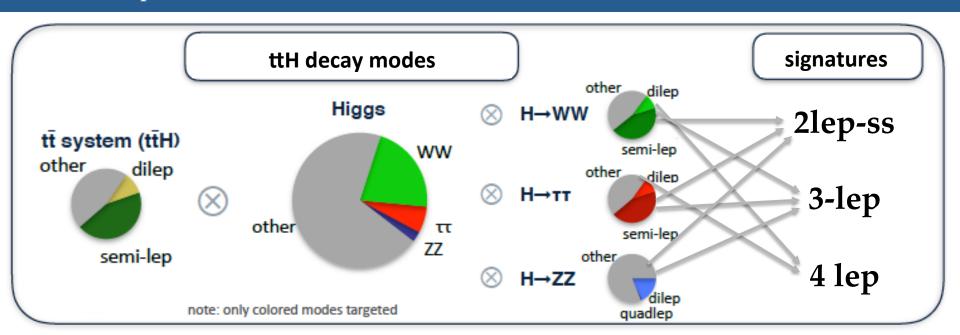


ttH,H→bb: Results from MJ

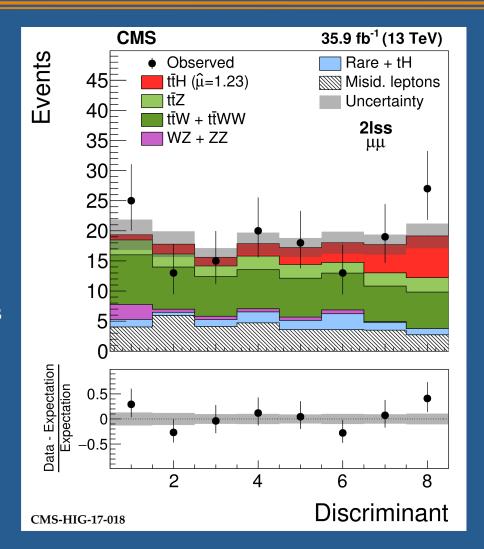
MJ channel:

- Low sensitivity but high statistics
- Overwhelming QCD background
- Dedicated Matrix Element
 Method discriminant in each
 category:

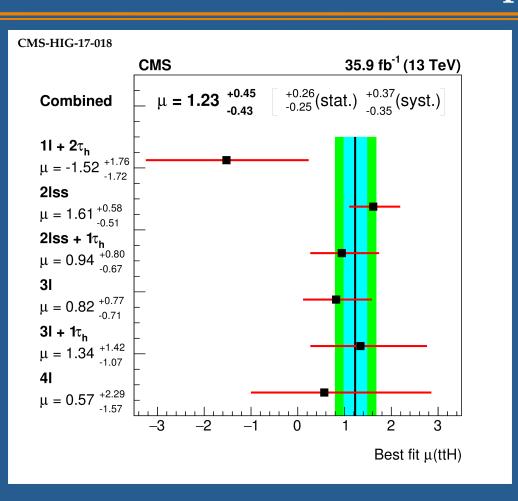
- Important to turn over every stone in the river
 - Value in having another orthogonal sample from which to approach the problem further insight on systematic uncertainties

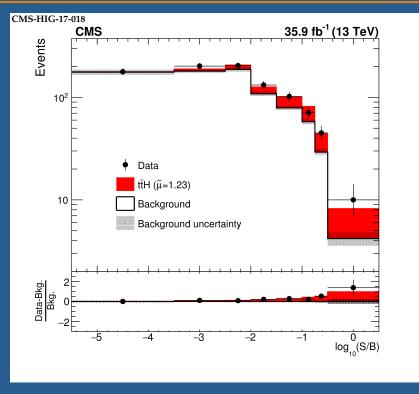

ttH, H \rightarrow multileptons (WW, ZZ, $\tau\tau$)

$ttH, H \rightarrow multileptons$


- ttH, H→leptons:
 - − Targeted Higgs decays and BR H→WW* (~20%) , $\tau\tau$ (6%), ZZ (3%)
 - Leptons originate from Higgs and top system
- Targeted experimental signatures include multiple leptons
 - 2 same-sign leptons (2lss)
 - 3 leptons
 - 4 leptons

Event selection and signal extraction details in the backup

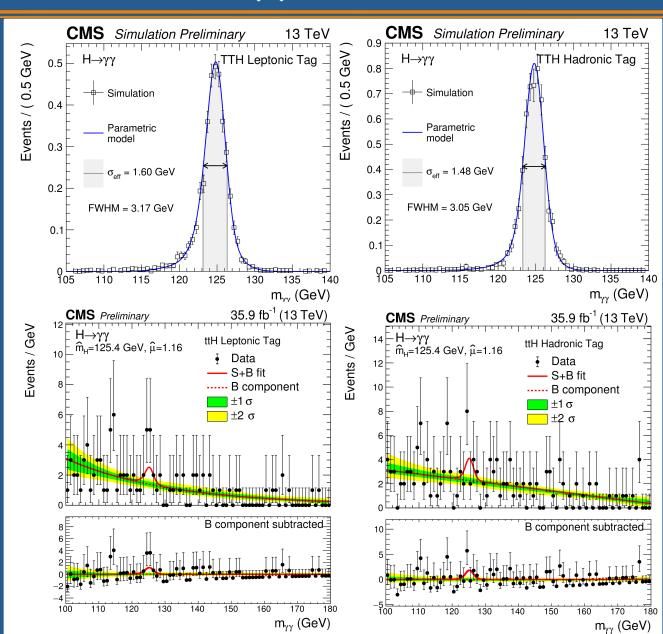


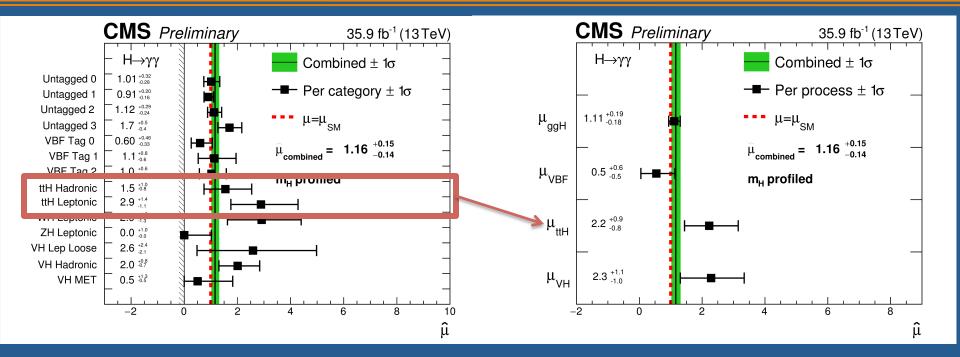

$ttH, H \rightarrow multileptons$

- Six search categories based on the number of e/μ and hadronic τ 's
 - one lepton and two τ_h (1l + $2\tau_h$)
 - two leptons with same charge ("same-sign leptons") and zero τ_h (2lss)
 - two same-sign leptons and one τ_h (2lss + $1\tau_h$)
 - three leptons and zero τ_h (31)
 - three leptons and one τ_h (3l + 1 τh)
 - four leptons (41)
- Discrimination from main backgrounds (ttW, ttZ, lepton fakes) via a mixture of BDT and matrix element method techniques
- Main systematic uncertainties: lepton efficiencies, lepton mis-id., normalization of irreducible backgrounds

$ttH, H \rightarrow multileptons: Results$

- Best fit: $\mu = 1.23^{+0.26}_{-0.25} (stat)^{+0.37}_{-0.35} (syst)$
- **Significance of observation is 3.2** σ , whereas the expectation, assuming SM-level of ttH production was 2.8 σ .
- Evidence for ttH production from this analysis alone.

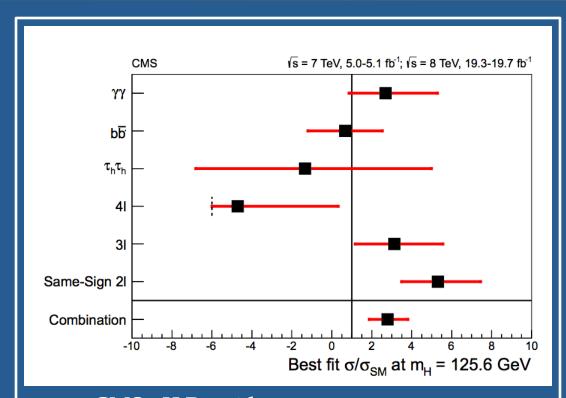

- Very rare process yet very pure signature
- Important:
 - Completely reconstructible final state
 - No combinatoric background
 - Hence, only ttH search channel in which one can reconstruct a clear mass peak!
- Event selection:
 - 2 photons (requirements on BDT γ ID and EM deposits), $|\eta| < 2.5$
 - (sub)leading $\gamma p_T/m_{\gamma\gamma} > 0.5 (0.25)$
 - $-100 < m_{yy} < 180 \text{ GeV}$
 - Categorize events according to ttbar system decay:
 - Leptonic:
 - ≥1 p_T>20 e or μ far from γ and M_Z, ≥2 p_T>25 jets, ≥1 b-tag
 - Hadronic:
 - special BDT event classifier
 - == 0 e or μ, ≥3 pT>25 jets, ≥1 b-tag


So considering a window of $M_{\gamma\gamma}$ = 125 ± 1.5 GeV, there will be ~4.5 background events in the ttH Leptonic category.

 $S/B \sim 0.85$

Event Categories	SM 125 GeV Higgs boson expected signal									Bkg		
Event Categories	Total	ggH	VBF	ttH	bbH	tHq	tHW	WH lep	ZH lep	WH had	ZH had	(GeV^{-1})
ttH Hadronic												2.40
ttH Leptonic	3.81	1.90 %	0.05 %	87.48 %	0.08 %	4.73 %	3.04 %	1.53 %	1.15 %	0.02 %	0.02 %	1.50

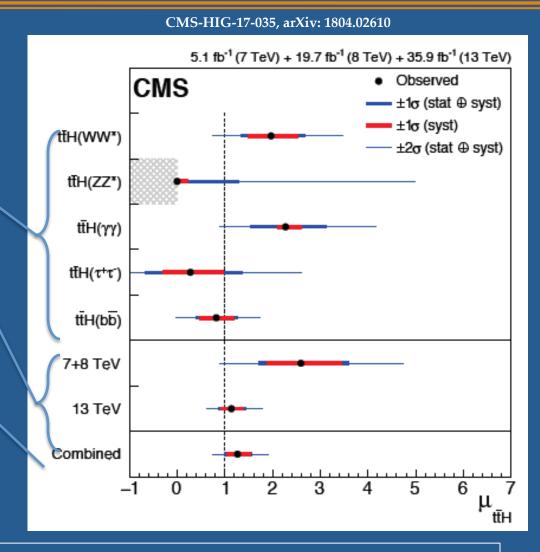
- Backgrounds so low allows for very simple signal extraction:
 - Determine signal shape in m_{yy} exploiting superior resolution of CMS crystal ECAL
 - Assume a falling exponential in m_{yy} for the uncorrelated diphoton background
 - See what amount of signal is favored in the data for a specific M_H hypothesis



- Results from two ttH categories combined:
 - $-\mu_{ttH} = 2.2^{+0.9}_{-0.8}$, assuming M_H = 125.4 GeV
 - Uncertainty driven by statistics
- Largely an afterthought…but will be a workhorse
 - Many recent changes in analysis of full 2016 data sample targeted for improving ttH sensitivity
 - Good things come to those who wait...and build a solid analysis in the meantime

Collection of Results

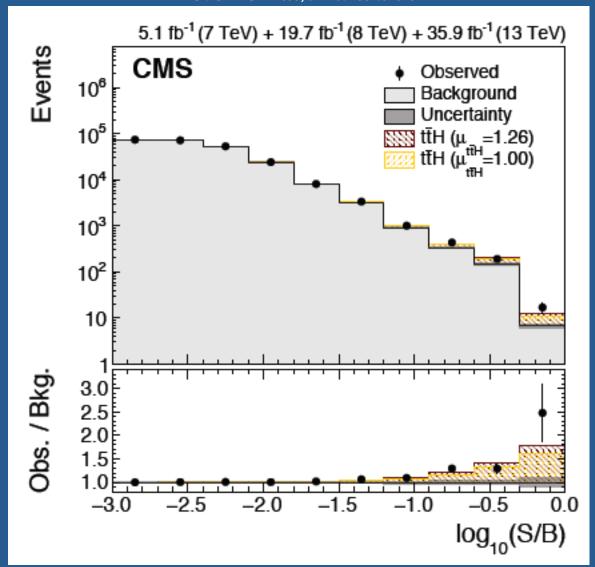
- Analyses highlighted here so far focus on the results from the 2016 LHC run at 13 TeV
- However, as noted earlier, the ttH campaign at CMS has been going on for many years, in each channel
- Run 2 ttH analyses have exceeded expectations:
 - Benefit from enhanced signal rates going to 13 TeV
 - But, further, analysis techniques have been refined
 - Additional channels were included
- Hence a combination of all published results spanning 7,8,13 TeV eras made sense, given the importance of the signature
- Not a simple exercise:
 - Inclusive signal theory and some background theory uncertainties correlated
 - Experimental uncertainties largely uncorrelated


• CMS ttH Run 1 legacy:

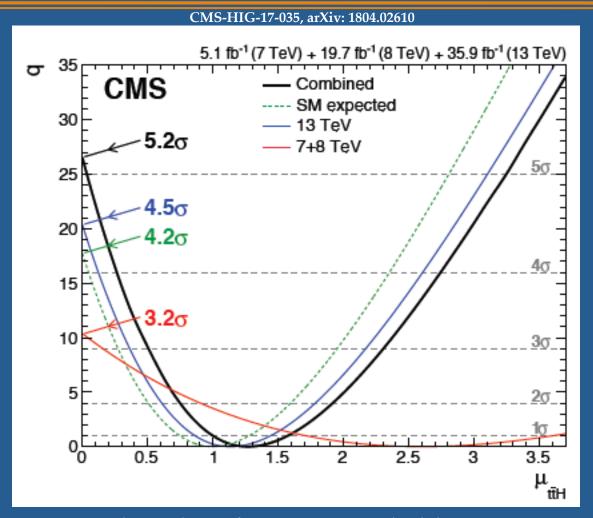
- The best-fit value for the signal strength μ is 2.8 \pm 1.0 at 68% confidence level.
- Excess above the background-only expectation of 3.4 standard deviations.
- Compared to the SM expectation including the contribution from ttH, the observed excess is equivalent to a 2-standard-deviation upward fluctuation.

Combined Results

- Measured ttH signal strength modifier for three different scenarios:
 - Five independent μ_{ttH} , one for each decay mode, fit spanning all eras
 - Two independent μ_{ttH}, one for each of Run 1 and Run 2
 - One μ_{ttH} , fit incorporating all overall data
- Observations:
 - Results of all fit scenarios consistent with SM prediction μ_{ttH} = 1.0
 - Combined fit is driven by 13 TeV analyses
 - ttH,H→bb smallest input uncertainty → drives combined result



Combined Results


CMS-HIG-17-035, arXiv: 1804.02610

- Really want to see a "money plot"
- Tough business in ttH:
 - large backgrounds
 - Poor resolution in H→bb
 - Lots of MET in multileptons
 - Many disparate channels
- H→γγ will provide this someday provided enough stats
- Until then we have plots such as these S/B over the 88 categories in the fit
- Clear excess in mostsensitive bins

First Observation of ttH Production

Observed significance is 5.2 standard deviations with respect to the background only ($\mu_{ttH} = 0$) hypothesis.

First observation of the ttH production process.

Summary

- Higgs physics has now moved from the search and discovery phase into a precision measurement era
- A few crucial characteristics of the Higgs boson remain to be measured the most foremost being the coupling between the top quark and the Higgs
- The ttH campaign at CMS has been proceeding since 2011, incorporating analyses at 7,8,13 TeV conducted in all primary Higgs decay channels
- CMS has performed a combination of all published ttH results and achieved the first observation of the ttH production process
- First direct measurement of the top-Higgs coupling is among the primary goals of the LHC physics program.
- The article CMS-HIG-17-035, arXiv: 1804.02610 has been accepted for publication in PRL -- just received notification this afternoon

US Institutes Played a Major Role

What's Next

Near term:

- Establish ttH in all accessible decay channels
- We have some work to do to make this happen:
 - Improve understanding of tt+HF process and uncertainties
 - Improve theoretical understanding of ttV
 - Improve upon already-mature treatment of non-prompt leptons

Longer term

- SM-driven backgrounds to ttH, H $\rightarrow \gamma \gamma$, ie tt $\gamma \gamma^*$ at NLO
- Refine background models
- Increase purity
- Differential cross sections

Things like EFTs / top partners / exotic 4th gen / 2HDM / etc look like SM top-Higgs...until you look closely, in the tails.

We will enter that regime in the future – best to lay the groundwork now.

Backup

